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A classical two-dimensional �2D� model for an artificial atom is used to make a numerical “exact” study of
elastic and nonelastic scattering. Interesting differences in the scattering angle distribution between this model
and the well-known Rutherford scattering are found in the small energy and/or small impact parameter scat-
tering regime. For scattering off a classical 2D hydrogen atom different phenomena such as ionization, ex-
change of particles, and inelastic scattering can occur. A scattering regime diagram is constructed as function
of the impact parameter �b� and the initial velocity �v� of the incoming particle. In a small regime of the �b ,v�
space the system exhibits chaos, which is studied in more detail. Analytic expressions for the scattering angle
are given in the high impact parameter asymptotic limit.
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I. INTRODUCTION

The gravitational three-body problem is the simplest non-
trivial three-body system. In 1890 Poincaré �1� proved that
this problem is nonintegrable and that closed form solutions
are very rare. This was the beginning of the study of nonlin-
ear dynamics; but even at this moment not much is known
about the dynamics of the three-body problem, due to its
large dimensionality, while a good knowledge of it is neces-
sary to study the dynamical properties of the solar system
and its long-term stability �see �2� for an overview on this
subject�.

Related systems are those made up of charged particles.
Such systems occur naturally in the study of atoms. Mostly
this problem is studied quantum mechanically, which is a
very difficult task, in particular if one is interested in the
dynamics of it. To gain a better insight in to these solutions,
the equivalent classical problem is studied in this paper,
where we will restrict ourselves for convenience to two-
dimensional �2D� systems. We consider a model system of
an atom in two dimensions �2D� so that an easy visualization
is possible.

The static properties of 2D classical clusters were studied
before. Most studies dealt with classical dots confined by a
parabolic potential. However, the static properties of a clas-
sical system that is more closely related to real atoms was
studied in Ref. �3�. They considered a system consisting of
classical charged point particles interacting through a repul-
sive Coulomb potential but which are held together through
the Coulomb potential of a positive charge that is located at
a distance d from the 2D plane the particles are moving in.
As a function of the strength of the confinement potential,
surprising rich physics was observed in Ref. �3� such as
structural transitions, spontaneous symmetry breaking, and
unbinding of particles, which is absent in parabolic confined

dots. Other static phenomena of this model system were
studied by Ferreira et al. �4� and the linear dynamical prop-
erties of this system, namely the normal modes, were inves-
tigated in Ref. �5�. In this work, we extend this research to
the dynamics of collisions on this system.

The present system is not purely academic but may be
realized experimentally. A quantum analog of the present
system can be found in semiconductor heterostructures
where a two-dimensional electron gas �2DEG� is formed at
the interface of two different semiconductors �6�. The 2DEG
in a typical high mobility GaAs/AlGaAs heterostructure re-
sults from remote doping. These remote dopants also act as
scattering centers for the electrons at the interface, limiting
their mobility. An electron can also be bound to such a re-
mote dopant resulting in the quantum analog of the system as
studied in Sec. III. Another well-known analog is that of
electrons above a liquid helium surface, which form a 2DEG
�see �7��. These electrons obey the laws of classical mechan-
ics if the density is low. A lateral Coulomb type of confine-
ment can be realized in this system by inserting impurities in
the substrate supporting the helium film.

We found that under certain conditions the scattering on
this system exhibits chaotic signatures. Chaotic scattering
occurs in many areas of physics �see Ref. �8�� and is a topic
of current research. In most previous theoretical studies the
interaction of an incoming particle with a particular fixed
potential or the motion within a specific shaped boundary
was studied �e.g., �9,10��. In this paper we extend this re-
search to the case where the potential varies dynamically
with the motion of the particles.

This paper is organized as follows. In Sec. II the model
system is introduced, the necessary equations are derived,
and the method of solution is explained. The method is ap-
plied to Rutherford scattering and to the scattering on the
classical 2D H+ ion. Both cases can be solved analytically
and serve as a test for our numerical program. In Sec. III we
discuss the scattering properties on a classical hydrogen
atom and discuss the richness in the dynamics of this system.
Our conclusions are summarized in Sec. IV.
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II. MODEL AND METHOD OF SOLUTION

The model system consists of N bound negatively charged
point particles �with charge −e� interacting through repulsive
Coulomb interactions. The system is held together by the
attractive Coulomb interaction to a remote positively charged
particle �with charge +Ze�. The motion of the negative par-
ticles is constrained to a 2D plane. The positive particle �the
impurity� is fixed at a distance d from the plane and is situ-
ated in a medium with dielectric constant �.

The potential energy for our system is given by

V =
e2
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�
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N
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where �i
� is the position of the ith particle in the �x ,y�-plane

and d� =dez
� is the distance of the positive fixed particle from

the 2D plane. The N bound particles are placed in their
ground state configuration, which was obtained by perform-
ing numerical Monte Carlo simulations followed by a modi-
fied Newton technique �11� to realize a higher precision.

To study scattering on this system another negatively
charged particle will be taken as an incoming particle. This
particle is considered to have an impact parameter b and an
initial velocity v at infinity, which characterizes the incoming
energy. This system is shown in Fig. 1.

The dynamics of this system are governed by the Newton

equations F� =ma� . If we choose the distance d as our length
unit and e2 /�0d as the unit of energy, the following equations
of motion are obtained:
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where 0 is the 2N�2N dimensional zero matrix, IN the
2N�2N dimensional unit matrix, and M the following
�2N�2N� matrix:
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with

Aij =
1

��xi − xj�2 + �yi − yj�2�3/2 ,

Bn =
Z*

�xn
2 + yn

2 + 1�3/2 , �3�

where n=1, . . . ,N, N is the number of bound particles and
Z*=Z�0 /� is the effective charge. This effective charge is
taken equal to the number of bound particles N to simulate a

FIG. 1. Schematic view of the model system in the case of one
bound particle and one incoming particle characterized by its veloc-
ity v and by the impact parameter b.
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real neutral atom. In this work we will restrict ourselves to
systems where N equals 0 or 1.

These equations are solved numerically to obtain the time
evolution of the particle motion by a standard adaptive
Runge-Kutta algorithm. An important tool to check the pre-
cision of the used ordinary differential equation �ODE�
solver is the energy, which must be conserved at all times.
For example, the difference between its minimum and its
maximum value is a measure of the precision of the ODE
solver.

A. Application to Rutherford scattering

In standard Rutherford scattering the positive fixed charge
is located in the same plane as the incoming particle, i.e., d
=0. The equations of motion become vx=dx /dt, vy =dy /dt,
dvx /dt=−Z*x�x2+y2�−3/2, and dvy /dt=−Z*y�x2+y2�−3/2. Us-
ing these equations the trajectories can be calculated and by
fitting a straight line through the trajectory after the collision
the scattering angle � can be obtained and the dependence of
� on the initial conditions �b ,v� can be investigated.

This scattering angle can also be derived analytically. The
derivation for the general case of a central potential can be
found in standard textbooks �e.g., see Ref. �12��. The general
formula is given by

� = � − 2�
rm

�

dr
b/r2


1 − 
b

r
�2

−
V�r�

T�

�1/2
, �4�

where rm is the closest distance between the incoming par-
ticle and the scattering center during the trajectory �it corre-
sponds to the largest root of the denominator�, T� is the
kinetic energy of the incoming particle, and V�r� is the scat-
tering potential. In this particular case it becomes �after in-
serting the Coulomb potential V�r�=−1/r and using energy
conservation�

� = − 2 arctan�1/bv2� . �5�

This equation shows that the scattering angle � depends only
on the parameter bv2.

Both methods give rise to the same Fig. 2. A direct com-
parison between the theoretical obtained and the simulated
results for two initial conditions varying only by a small
amount �10−11� show that our ODE solver is capable of this
precision.

One sees that in the limit of bv2→0 the incoming particle
is backscattered, e.g., �=−�+2�2bv2. This behavior is illus-
trated in the inset of Fig. 2, which shows the different trajec-
tories for decreasing bv2. This behavior is caused by the
combined effect that the potential diverges at the origin
�V�r��1/r� and conservation of energy.

B. Application to scattering on a classical 2D hydrogen ion

The well-known results for Rutherford scattering will
now be used to compare with scattering on a classical 2D H+

ion. Therefore we consider the case where d�0 �which
means placing the positive charge at a certain distance from

the plane�. The potential becomes, in the earlier defined
units,

V�r� = −
1

�r2 + 1
. �6�

Using Eq. �4� we get
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�7�

This integral has no simple analytical solution, but it can be
integrated numerically, although the integrand diverges for
r=rm. This is better seen when we eliminate b using energy
conservation and substituting u=1/r, which results into

I = �
0

1/rm b du


1 − rm
2 u2 −

rm
2 u2

T�
�rm

2 + 1
+

1

T�
�u−2 + 1

�1/2
. �8�

The integrand has a square root divergence at its upper limit.
The results are shown in Fig. 3 for different values of b.

Note the difference in behavior in the region of small bv2

between Figs. 2 and 3. To explain this we first look at large
impact parameters b. The distance from the particle to the
positive charge is then large, so that the interaction strength
is small. The particle will be scattered over a very small
angle. If the impact parameter becomes smaller, the distance
to the positive charge becomes smaller and the interaction
stronger, so that the particle will be scattered over a larger
angle. In the limit of small b the deflection is small and in the
limit of b=0 there is no deflection at all. When b is in-
creased, the deflection also increases. This seems contradic-
tory because the interaction strength decreases; but this is
compensated by an increase in the interaction time. An addi-

FIG. 2. �Color online� The scattering angle versus bv2 for Ru-
therford scattering. The inset shows the trajectories of the incoming
particle, moving in a Coulomb potential, as a function of bv2.

DYNAMICS OF SCATTERING ON A CLASSICAL TWO-… PHYSICAL REVIEW E 75, 036606 �2007�

036606-3



tional effect is that the closer the particle comes to the origin,
the faster it will go �because of energy conservation� and
hence the smaller the interaction time. This is illustrated in
the inset of Fig. 3 where several trajectories are plotted for a
fixed velocity, but different b values. There must be a tran-
sition from one regime to the other, which explains the local
minimum in Fig. 3.

III. SCATTERING ON A CLASSICAL HYDROGEN ATOM

We now add a negative particle to the previous system,
which we consider in its minimum energy configuration. In
this case this is the origin as can easily be seen from Eq. �1�.
The effective charge Z* is again taken equal to 1. This system
can be considered as a classical 2D model of a hydrogen
atom �19�. We launch a particle on this system. Depending
on the initial conditions three different types of collisions can
be distinguished.

A. Classification

A first type of collision that can occur is normal scatter-
ing. This type of collision occurs when the energy transfer
between the incoming particle and the bound particle is
smaller than the energy needed to escape from the potential.
This energy is given by the difference of the potential when
the bound particle is in its original position �V=−1� and at
infinity �V=0�. So if the transferred energy is less than 1, the
particle remains bound, but the energy it receives will result
in elliptic precessing orbits. The incoming particle loses a bit
of its energy, so it will slow down, and it will be scattered
over a certain angle �. We will call this type of collision type
I and it is illustrated in Fig. 4.

When the transferred energy is larger than 1, the bound
particle becomes free. If the remaining energy of the incom-
ing particle becomes negative, this particle becomes trapped
and it will move around the origin in precessing elliptic or-

bits. We will call this kind of collision type II and it is illus-
trated in Fig. 5. There is an exchange of particles, the bound
�free� particle becomes free �bound�.

The last type, type III, occurs when both particles move
freely after the collision. This will be the case if the trans-
ferred energy is larger than 1 and the incoming particle has a
remaining positive energy. Thus the total energy of the sys-
tem is positive, so this can only happen when the incoming
velocity v is larger then �2. This ionization process is shown
in Fig. 6.

The scattering process where both particles become
bound is not possible when the effective charge Z* is equal to

FIG. 3. �Color online� The scattering angle as a function of bv2

for different b values for the displaced scattering center. The inset
illustrates the increase in scattering angle with increasing b values
for v=−1.

FIG. 4. �Color online� An example of a collision of type I �b
=0.7 and v=−3.5�. The inset shows the evolution of the trajectories
during the collision. The symbols indicate the positions of the two
particles at different times.

FIG. 5. �Color online� An example of a collision of type II �with
b=0.6 and v=−1�. The same convention is used as in Fig. 4.
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1. In the static case the only stable minimum configuration
that can be reached is where one of the particles is in the
origin and the other is at infinity. Even in the dynamical case
it is not possible to have both particles bound because both
particles will continually exchange energy and at a certain
moment one of the particles will have enough energy to es-
cape from the potential.

Using the amount of transferred energy it is possible to
make a distinction between the three types of collision. Fig-
ure 7 is an example of a typical energy transfer diagram, for
a fixed impact parameter of b=0.3 where 	E1 is equal to the
energy transferred from the bound particle to the incoming,
	E2 the energy transferred from the incoming to the bound
particle, and E2��� is the energy of the incoming particle
after the collision �at time t=��.

Using such energy transfer diagrams a scattering regime
diagram is made �see Fig. 8�, which shows the occurrence of
each type of collision depending on the initial conditions b
and v.

The inset shows the same graph, but on a logarithmic
scale. The asymptotic boundaries �for small b� are shown as
red lines. These asymptotic boundaries are, respectively, v
=0.355, b=2�2v−3, and b=�2v−1.

B. Chaotic regime

The area indicated in Fig. 8 by the ellipse is special. In
this area the collision type changes between type I and type
II within small variations of b and/or v. It exhibits chaotic
behavior. This can be seen in Fig. 9 which shows a part of
this area in more detail. To construct this figure we chose
random initial conditions and numerically determined the
type of collision which is then represented by a colored point
on the figure. The reason to choose random initial conditions
instead of a regular grid is that this allows one to see a finer
structure with less calculated points. An alternation of the

FIG. 6. �Color online� A collision of type III �b=0.3 and
v=−3�.

FIG. 7. �Color online� Energy transfer using b=0.3. The three
types of collisions are separated by dotted lines.

FIG. 8. �Color online� Scattering regime diagram indicating the
three different types of collisions as a function of the initial condi-
tions. In the area indicated with an ellipse the type of collision
becomes strongly dependent on the initial conditions �see Sec.
III B�. The inset shows the same graph in log-log scale. Asymptotic
boundaries �for small b� are shown by the lines.

FIG. 9. �Color online� A more detailed view of an area inside the
marked ellipse in Fig. 8. The different colors indicate the type of
collision �either type I or type II�. As can be seen the type changes
quickly with the initial conditions. A stripelike pattern can be ob-
served. The inset shows a zoom of the marked rectangular area. The
white rectangular area inside the inset indicates the box used for the
calculation of the uncertainty dimension.
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type of collision is observed �the stripe-like pattern�. This
pattern is also seen in the inset in more detail which may
indicate fractal behavior.

We will now characterize this chaotic behavior by calcu-
lating the fractal dimension. We call the collection of all
initial conditions that lead to a particular type of collision a
basin. A point p is a boundary point of a basin B if every
open neighborhood of p intersects the basin B and at least
one other basin. The set of all these points is called the basin
boundary. This boundary is called fractal �13–15� when its
box-counting dimension is not integral. This implies in gen-
eral the existence of an unstable chaotic invariant set embed-
ded in the fractal basin boundary �16�.

We will compute the uncertainty dimension of the basin
boundaries using the method of Ref. �8�. In a box of initial
conditions �b ,v�, indicated in the inset of Fig. 9, we selected
105 random initial conditions. For these initial conditions we
calculated the type of scattering. Then we perturbed the ini-
tial conditions with a certain � �� from 10−4 to 10−11�. For
these perturbed initial conditions the scattering type was also
calculated. When this type was different from the type of the
unperturbed conditions, we call the initial condition uncer-
tain. The fraction of uncertain conditions �f���� versus � is
then plotted on a log-log scale. According to the theory in
Ref. �8� these points should lie on a straight line given by
log10 f =c+
 log10 �. In this equation the slope 
 is called
the codimension of the basin boundary. The dimension d of
the boundary is then found by using d=D−
, where D is the
dimension of the initial conditions phase space and thus
equal to 2. In Fig. 10 we present the result of such a calcu-
lation using ten different ensembles, where both b and v
were perturbed. The error bars are larger for smaller � values,
as the total number of uncertain points becomes smaller. The
basin boundary d is equal to 1.41, so clearly fractal �the
dimension of a nonfractal boundary is 1�. It should be noted
that the calculated d is an average of all boundaries appear-
ing in the used box of initial conditions.

An intuitive explanation for the chaotic behavior is given
when looking at a typical trajectory in this area. Figure 11

shows that both particles stay close together for a long time.
During this time a continuous exchange of energy takes
place. The exact trajectories and thus the exact amount of
transferred energy depends sensitively on the exact initial
conditions. The classification of the collision depends on this
exact amount of transferred energy, so it is very hard to pre-
dict which type of collision will occur. This can also be seen
in Fig. 12 which plots the amount of time that both particles
are closer than 30 units of distance of each other, which is a
measure of the scattering time. As can be seen this region
matches the region where the frequent changes of collision
type were detected.

C. High impact parameter asymptotic regime

As can be seen from the scattering regime diagram �Fig.
8� when the impact parameter is larger than 0.9 the incoming
particle always scatters to infinity while the initially bound

FIG. 10. �Color online� A least-squares fit of log10 f��� versus
log10 �. The slope 
 is equal to 0.59±0.03 and consequently the
boundary is fractal.

FIG. 11. �Color online� Trajectories for b=0.6 and v=−1.366.
Both particles are close together for a long time �longer than 1000
time units�. The symbols indicate the positions of the two particles
at different times.

FIG. 12. �Color online� Collision time versus b and v. The area
with high collision times coincides with the chaotic region in Fig. 8.
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particle remains bound �i.e., scattering of type I�. One can
expect that when the impact parameter is large enough, i.e.,
b�1, the flyby incoming particle does not disturb substan-
tially the position of the bound one. This reduces the prob-
lem to the simple case of scattering on a plane from a central
2D potential of two opposite point charges separated by a
distance 1 in reduced units. In the same limit b�1 the po-
tential can be approximated with the one of the �properly
positioned� electric dipole. Its electric field is axial symmet-
ric, i.e., it has only a radial nonzero component on the plane
equal to

Er�r� =
r

�r2 + 1�3/2 −
1

r2 � −
3

2r4 . �9�

The corresponding 2D scattering potential for a negatively
charged incoming particle will be

V�r� �
1

2r3 . �10�

Substituting it into Eq. �4� one can express the scattering
angle:

� = � − 2�
rm

�

dr
b/r2

�1 − �b/r�2 − 1/�v2r3��1/2

= � − 2�
0

�m�
� d�

�1 − �2 − 
�3�1/2 , �11�

with ��b /r, 
�b−3v−2, and �m=b /rm the minimal positive
root of the denominator, i.e., of the cubic equation

1 − �2 − 
�3 = 0. �12�

Changing to variable t�� /�m the integral in Eq. �11� can be
expressed as

� = � − 2�m�
��
0

1 dt

�1 − �m
2 t2 − 
�m

3 t3�1/2 . �13�

Let us introduce a new parameter g�
�m
3 , which can sim-

plify operations with the integral in Eq. �13�. The coefficient
of the quadratic term in Eq. �12� then can be expressed as
�m

2 =1−g. Note that both 
 and �m are real and positive im-
plying 0
g
1. We can rewrite the integral in Eq. �13� in
the form �21�

I1�g� = �
0

1 dt
��1 − t��1 + t + gt2�

. �14�

The latter can be expressed as the incomplete elliptic integral
of the first kind �17�.

Equation �12� has only one positive root for all values of

. It can be expressed explicitly using, for example, the
Viète’s trigonometric formulas �see, e.g., �18��:

�m =
2

3

cos
1

3
arcos
27

2

2 − 1�� −

1

3

. �15�

Together with Eq. �14� and the definition of the parameter g
this provides the exact solution for the scattering problem at
a central potential Eq. �10� according to Eq. �13�.

Actually, the root �m�
� monotonically decreases from 1
at 
=0 to 0 at 
→�. This corresponds to the change of the
parameter g in the same limits. The function I1�g� monotoni-
cally decreases on the interval �0,1� from � /2�1.57 to
����4/3���5/6��1.40. It means that the global behavior of
the function ��
� is governed mostly by the prefactor �m�
�
in Eq. �13�.

In the flyby asymptotic regime we can restrict ourselves
to the case of small 
. In this limit

�m � 1 −



2
, g � 
, I1 �

�

2
− 
1 −

�

4
�
 . �16�

Substituting it into Eq. �13� we finally arrive at the
asymptotic expression for the scattering angle:

� � 2
 =
2

b3v2 . �17�

Figure 13 compares the simulation results with this
asymptotic dependence. The plane on which the relative dif-
ference between the calculation and the simulation is 10%
has been drawn to illustrate the fact that the difference be-
comes smaller in the asymptotic limit.

IV. SUMMARY AND CONCLUSION

We investigated the scattering of a negatively charged
particle �an electron� on a classical two-dimensional atomic
model system. The Newton equations were numerically inte-
grated by using an adaptive Runge-Kutta algorithm. This
model system shows a rich variety of physical phenomena;
e.g., it allows one to study different scattering phenomena:
elastic scattering, nonelastic scattering, ionization, exchange
of particles, and chaos.

We considered two one-particle systems, which were both
solved analytically and numerically. Both systems consist of
a potential resulting from a positive fixed charge. In the first
system the positive charge was located in the same plane as
the incoming particle �e.g., Rutherford scattering�, while in
the other system the positive charge was placed at a distance
d from the plane. In both cases the motion of the electron

FIG. 13. �Color online� Scattering angle � versus impact param-
eter b and initial velocity v in the “flyby” asymptotic limit b3v2

�1 as compared with the exact numerical result.
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was constrained to the plane. A qualitative difference was
found in the scattering angle as a function of the impact
parameter for small b and v. In the limit b→0 or v→0, the
incoming particle is backscattered in the Rutherford case,
while in the other case it is not scattered at all.

When an additional particle is added �corresponding to a
classical hydrogen atom� three different types of collisions
were identified. The region of appearance of each type was
plotted in a scattering regime diagram. A clear distinction
could be made between the different cases, except in a small
area. In that area the collision type was hard to predict and
changed very fast as a function of b or v. It is shown that this
area coincides with collisions where both particles stay close

together for a long time. This can be understood as an intui-
tive explanation for the chaotic behavior in this area. It was
shown that the basin boundaries have an uncertainty fractal
dimension of 1.41. We found that the asymptotic behavior
for small b can be fitted to simple equations. In the large b
limit it is shown analytically that the system can be described
as scattering off a fixed dipole.

ACKNOWLEDGMENTS

This work was supported by the Flemish Science Foun-
dation �FWO-Vl�. D.V.T. thanks J.O. Indekeu for interesting
discussions.

�1� H. Poincaré, Acta Math. 13, 1 �1890�.
�2� M. Lecar, F. A. Franklin, M. J. Holman, and N. W. Murray,

Annu. Rev. Astron. Astrophys. 39, 581 �2001�.
�3� G. A. Farias and F. M. Peeters, Solid State Commun. 100, 711

�1996�.
�4� W. P. Ferreira, A. Matulis, G. A. Farias, and F. M. Peeters,

Phys. Rev. E 67, 046601 �2003�.
�5� W. P. Ferreira, F. M. Peeters, and G. A. Farias, Phys. Rev. E

68, 066405 �2003�.
�6� G. Bastard, Wave Mechanics Applied to Semiconductor Het-

erostructures �Les Editions de Physique, Les Ulis, 1988�.
�7� T. Ando, A. B. Flower, and F. Stern, Rev. Mod. Phys. 54, 437

�1982�.
�8� E. Ott, Chaos in Dynamical Systems �Cambridge University

Press, Cambridge, England, 1993�, pp. 185–196.
�9� V. Daniels, M. Vallières, and J. Yuan, Chaos 3, 475 �1993�.

�10� E. Ott and T. Tél, Chaos 3, 417 �1993�.
�11� V. A. Schweigert and F. M. Peeters, Phys. Rev. B 51, 7700

�1995�.
�12� G. Sposito, An Introduction to Classical Dynamics �Wiley,

New York, 1976�, pp. 147–153.
�13� C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. Lett. 50, 935

�1983�.
�14� C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke, Phys.

Lett. 99A, 415 �1983�.
�15� S. Takesue and K. Kaneko, Prog. Theor. Phys. 71, 35 �1983�.
�16� C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. Lett. 56, 1011

�1986�.
�17� M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions �Dover, New York, 1964�.
�18� W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-

terling, Numerical Recipes in C: The Art of Scientific Comput-
ing �Cambridge University Press, Cambridge, England, 1992�.

�19� This system differs from the one used in classical trajectory
Monte Carlo �CTMC� methods, because in this system the
electron is initially at rest and the positive core is separated
from the plane were the electrons are moving in. Also no ran-
dom perturbations are used in our approach during the integra-
tion of the trajectories. See �20� for a recent study using this
technique.

�20� M.-H. Lee, G. Tanner, and N. N. Choi, Phys. Rev. E 71,
056208 �2005�.

�21� S. V. Novikov �private communication�.

PEELAERS et al. PHYSICAL REVIEW E 75, 036606 �2007�

036606-8


